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Arthur A. GiOrdanO helped t o  establish the second piece-wise linear 

aPgraximation of Section 111 snd Eric Reid programed Equation (28) t o  

prwide the graphs of Figures 6 through 9. 
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ABSTRACT 

It is sham that the maXinarm-likelihood (ML) detector f o r  noisy, 

binasy channel with restricted intersymbol interference (ISI) consists 

of' a matched filter followed by a tapped delay line. 

is a nonlinear M c t i o n  of the tap outputs. 

probabilijy of error indicate that  a gross approximation t o  the ML 

detector perfonns as well as an optimum linear detector. 

assumptions are (1) bi-pola,r binary signals, (2) IS1 only between 

adjacent bauds, (3) stationasy additive white, Gaussian noise, and 

(4) perfect synchronization. 

assumptions (1) and (2) and t o  handle stationary, non-white Gaussian 

noise . 

The usem output 

Bounds on the per-symbol 

The major 

Extensions a m  suggested t o  remove 
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1. Introduction 

In a previous report? f t  was sham that the maximum-likelihood (ML) 

detector fo r  a noisyo binary channel with memory @auld be implemented 

using two matched filters, one delay element and 8 recorder-play-back 

system. In  th i s  report; we will m o d i f y  and streamline the detector 

structure so that it includes only one matched f i l t e r  and so that  

decisions can be made seqyentieally, in  real t i m e o  We find new upper 

and lower bounds for  the detector's performcbnce by certain l imiting 

b C h n i W € ! s ~  We also discuss son& extension8 t o  the earlier work. 

There are fowp key wmmptims for the main body of t h i s  report,: 

(1) The ai@;nal is 

where  pk = 4-1 81: -1, Pepresents the kth symbol t o  

be transmitted* 

1s bm exwtly. 

w pk's are independent and s ( t )  

Thus; we focus our attention on 

the binary detection of a known signal., In Section 

5 we diseuse 'bdefly the xmlti-level case. If s ( t )  

can be determined, adaptively, during transmission. 

(2) The si@.s(t) is sm-d only into one adjacent 

baudo Thw s ( t )  lasts only from 0 t o  2'11. This 



The noise is  white, additive and Gaussian. 

Colored noise can be handled by suitable pre- 

w h i t e n i d  prior t o  detection. 

s ( t )  would be the output of the pre-whitening 

f i l t e r  and would be subJect t o  restriction 

(2) on page 1. 

Synchronism i s  mintained between transmitter 

and receiver. This may be achieved, for  example, 

by the transmission of recurrent synch pulses. 

I n  that  case 

The ML detector discussed I n  this  report is new i n  two respects. 

F i r s t  of all, although it has the general appearance of the linear, 

tapped-delay l ine detectors offered by lucky3 and by others4r5, it 

has been developed without the constraint of linearity. 

detector w i l l  always y ie ld  a probability of error that i s  smaller than 

the corresponding l inear detector (except i n  some l i m i t i n g  cases whem 

the performances w i l l  be Identical), I n  this  sense the ML detector i s  

mathematically equivalent t o  that derived i n  the earlier report1, the 

implementation i s  different and is, in  fact, inspired by the linear 

detectors of zUcky3 and Tufts05 

Thus the ML 

Finally, the new detector structure suggests a piece-wise l inear 

approximation t o  the optimum detector, which i s  quite simple t o  implement. 

The approximation i s  an extension t o  the class of "feedback tail  cancel- 

lation" schemes discussed by Tufts and others (see Tufts5 and the 

"switched mode" detector of Aein and Hancock 6 ). 

and near optimum performance, it merits consideration i n  an actual binary 

transmission system. 

Because of i t s  simplicity 



2. The Detector Specif$c~&ion and st;ructure 

In LE] we show that the ML detector first computes 

where y(t) i s  the received signal, 

and n ( t )  is the additive, white, Gaussian noise of double-sided power 

spectral density N0/2 w a t t s  per cps. Ak represents the COrrebtlOn of 

the signal (+)s(t-W) with the received signal and can be implemented 

w i t h  a matched filter or  with a multiplier and integrator. 

The detector then bases i t s  decision about the polarity of pk on 

the StatiStiCAk ’, 

and 211 

-3- 



For example, if the source probabilities are equal and the costs associated 

with each type of error are equal, then the detector decides 

Note that we may express R as 

R P 2pr 

w h e r e  p, defined as 

9 
d P '  

NO 

is  the signal-to-noise ra t io  and r, defined 68 

s ( t )  s(tiJl!) a t  
ra- Y 

2T 
l s 2 ( t )  dt  
0 

will be called the index of interference and is a measure of the hamful 

effects  of intersymbol interference. Now r is loosely bounded by 

so we expect tbt i n  the face of severe interference 

of the same order of magnitude as ps 

R w i l l  have values 

-4- 



EQuations (2) and (3) define the'ML detector and the corresponding 

structure is shown i n  Fig. 1. 

and those of hcky3 and of Tufts4, that is, a matched f i l t e r  followed by 

a tapped delay line. 

N o t e  the similarity between this structure 

In t h i s  structure, however, the useful output i s  

mot merely a weighted sum of the tap outputs. 

t o  its neighbor a e r  that neighbor is passed through a non-linear amplifier 

(the box labelled Z and defined by Equation (4) . The M taps t o  the left 

of the center tap, the useful output, indicate that M bauds of the past 

data have been 0ptbuall.y processed t o  a id  i n  the decision on elk. The N 

Here each output i s  added 

1 

taps t o  the right indicate that N future bauds have alss been considePed. 

In theory one should let M 

structure. 

Past data, by a modification of Fig, 1. 

Fig. 2. 

00 aad IV + 00 t o  achieve the optimum detector 

We can, i n  fact, achieve M 300, that is, we can consider all 

This modification is  8 h m  i n  

Obviously, a consideration of all fiture data required infinite 

delw (for an inf ini te  binary sequence) so a finite N must be chosen based 

on a study of cost per additional section versus improved performance per 

additional section (assuming the associated increased delay is  acceptable). 

Such a study i s  very diff icul t  analytic- and i s  probably best done 

experimentallye 

One of the interesting features of the detector structure of Figo 2 

is  tha t  all the non-linear aqplifiers, the Z boxes, are identical. Therefore, 

knowing the signal shape s ( t )  (so that the matched f i l ter  can be constructed), 

the detector structure is determined by a specification of the parameter R 

as given by (5) or (6), since the  amplifier characteristics depend only on 

R. In  Fig. 3 we show the Z-box amplifier input-output characteristlcs for  

several typical values of Ro Note that these curves are fa i r ly  w e l l  behaved 

and saturate at fR. 

-5 - 



Filter Matched to s(t) 
lkpulse Response is Non-Zero 
fKlm t = 0 t o  t = 2T 

. 
Tapped Delay Zine T Seconds Between Taps t 

Smledat /&a Threshold I-- kth Decisfon 

t = (k-tmr*)T 

Fig. 1 The ML Receiver 
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L 

.l Tapped Delay IiLne 

punit. 
Delay 

%s 

4 1  
7 

e -  

Ak kth Decision 
). Threshold Sampled at , 

t = (k+W2)T v 

Fig. 2 A Shplified ML Receiver 
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:[x), output 

x, input 
R n l  
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To provide insight into the detector operation le t  us assume that 

the detector 0% Fige 2 uses no tapged delay l ine at all. Hence 

We see that the k* decfsion s t a t i s t i c  contains first of all the correla- 

t ion of %(tow)  with the received  signa,^, namely Ake TIE other additive 

te rm PS b a e d  by ARo TD fwt, Wt3lrming high sM(, Ak-1 WiU be either 

4 rge  positive for b,l = 1 or large negative for  bml = -10  

refendng t o  F3.g. 35 we w i l l  subtract R f m  Ak if Pk-1 is positive and 

Thus3 

We WXLL add R to Ak if  4-1 is 9e&iVe. ' J U S  addition O r  subtraction 

of R is mathematically equivalent t o  subtracting aut the channel memory 

and is, therefore, a "2eedback t a i l  cancellation" scheme as mentioned i n  

the jtntkoduetion, The: novelty here is that the t a i l  cancellation occurs 

on a probab91J.stie bmls,, 

we choose an intermediate v d .  based on h-l + z(&+ + .e.], which is  

a measure of 

That is;, we do not simply ~UQW R o r  -R but 

c e h e t y  conee- $-lo 

To e x d m  the efleeb o f t h e  fitwe data on %he detector, we m n a ~ r  

cwsitier that the data has been received with tine reversed, 

"tai1" 0% the sr3gLnd pulse becanes the maltlrn body of the new pulse and 

vice-versao We can perfom a sMlax, probabilis%ic tail cancellation. 

One then conbines the information concerning past and future i n  the 

center tap t o  0btiaAn the l4.L s5~&9s%ic~ 

Thus the 

3. PSece-Wise Ihernr &pmxima%fom 

Two, mceessi-veSg. bettas appmximations t o  the ML detector m considered. 

Both are really approxim&ima on the function Z{x) so that the block diagram 

spectficaticm sf Fig. 2 is s & L U  applicable. 

-9- 



The first appraximsrtion is  ~ ' [ x ) ,  

where 

1, x > o  i -1, x < 0 . -Cx3 

If one considers only past data, then the resulting detector is exactly 

a tail  cancellettion scheme as previously discussed. 

f i turn data, as i s  done in  Fig. 2, represents an improvement over 

previous detectors of t h i s  type. The performance of t h i s  detector, 

with a slight modification, is considered i n  the xx% section and 

serves as the upper bound on the ML detector. 

Consideration of 

A good approximation Z"[x] t o  Z[x] i s  sham i n  Fig. 4. In  that 

figure the attenuator, A, i s  given by 

This choice of A3 together with the subsequent piece-wise linear amplifier 

z, ylelds an approximation that is exact fo r  very small and f o r  very large 

values of x snd also fo r  those x for which Z[x] = kR/2. This second 

approxbmtion is especially'good for large R(R > 16) as can be seen frum 

Fig, 5 w h e r e  1 z ~ x )  is plotted versus fo r  several values of R. 
R R 
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Mg. 4 Second &proximatian to Zlx) 
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4. Performance 

TIE non-linearity of the ML decision S t & i S t i C &  as given by (3), 

discourages an exact analytical determination of the per-symbol probability 

of error Pee 

buunds for  Pe. 

We w i l l  be content, therefore, t o  find upper and lower 

A reasonable lower bound is easily established. If we want t o  plot 

Pe versus p, the signaL-to-noise r a t i o ,  then we must choose r, the index 

of interference, as a parameter. 

is r = 0 which means that the main portion of the pulse s ( t )  i s  orthogonal. 

t o  its tail. 

obviously, the most favorable condition 

If such is  the case, proper f i l t e r ing  can extract this tsil 

and the particular tim slot occupied by the tail is  unimportant. 

consider that it is, i n  fwt, sent during the stme time slot as the main 

body of the pulse. 

We may 

Thus the $ e b , l  signal energy is  availrrble i n  one baud 

and we have the usual, interference-less probability of error given by 

Erfcf i ) ,  where 

Our lower bauld on Pe is, then, 

ErfCm < Pee 

To establish the upper bound on Pe we establish the probability of 

error  for a sub-opt€mum detectorol !l!o t h i s  end we separa'te & of Equation 

(1) in to  

-13- 



W h e r e  

i 
and 

I 

d k e P  J y( t )  s ( t - w )  at. 
(k+l)T 

NO 

ThUS Ck is the COZTd&iOn Of the &%a with the first p& Of the pulse, 

s ( t ) ,  

these definitions we can w r i %  the optimum s t a t i s t i cAk  of Equation (3) as 

dk is the correlation of the data w i t h  the puI-se’s tail. With 

Now we use the first apprcodmstion Z’{x} t o  Z[x) as given by EQuatian 

(9) t o  yield a new s t a t i s t i c  

The S ta t i s t ic  t o  be studied, Ukj is then faund by setting t o  zero a l l  d 

terms under the first Sgn bracket and all  c terms under the second. Thus 



Note thst Ui is a "tail  cancellation" detector* aperating only on the 

data up t o  (k+l)T and I$ is its counterpart operating only on data 

after (k+l)T. 

It can be shown* that i f  Ui is  used as a decision s t a t i s t i c  for 

pk it yields a probability of error P: given by 

W h e r e  
T 

Thus, we deduce that Uz yields a probability of error 

%; is  exactly the switched mode detector of Reference (6). 

*R. A. Gonsalves, unpublished notes f o r  Course 3.906, Northeastern 
W R r s i t y ,  1966; thZs may also be deduced from Reference (6). 
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With these definitions of C and D w e  can write uk more explicitly as 

where 

The desind probability of error e- is 

or 

Where 

etc. We can evaluate these 4 probabilities, as the following evalurttion 

of P1 indicates. 

F- (23) and (26) 

-16- 



In a similar fashion we can establish PZ0 P3 and P4e The resulting 

P+- is e 

~r - (Q-Q+ + P-P+> ~rfcgF] 

-17- 



This is  our upper bound on Pe for  the ML detector. Thus 

In  the derivation of the upper bound we were reqdred t o  separate 

the main portion of the pulse fram its tail. Thus, i n  order t o  plot 

Pe vs. p, we need a new parmeter which defines the division of energy. 

kt a 
r s 2 ( t )  d t  a=p'ir s2(t) d t  

be the required pammeter. 

074 and 1.0 show this upper bound, E q u a t i o n  (28), versus p for  several 

Then Figums 6 ,  7, 8, and 9 for  a P .25, -50, 

values of r. 

Since Schrwart;z's inequality requires 

we have the foUowing inequality for C, D, and R 

$ 5 CD. 

This implies the inequality 

and accounts for the choices of the parameter r i n  Ngures 6 ,  7, 8, and 9. 

Mnally, since P:- is  symmetric i n  R and since C and D can be interchanged, 

Figures 6 through 9 aspw d s o  for a P 4, 2, 1.33 and 1 respectively, aSd 

for  r or  -r, as indicated. 
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t 

To canpare the performance of the ML detector w i t h  others we assume 

Since s ( t )  is symnetric the unit energy pulse s ( t )  as shown i n  Flgo 10. 

about t = T, we have a 01 1. Then the output, of the matched f i l t e r  of 

Flge 2 would  be g( t )  as shown, i f  s(t) done were sent. 

course, the autocorrelation function BSs( t )  of s( t)  delayed by 2!l? seconds 

This is, of 

so the index of interference r is 

From the inequality (31) this is about one-half the maximum interference 

that can occur. 

on Pe for  the ML detector. 

In Fig. 11 we show the resulting upper and lower bounds 

Also shown i n  this figure is the ta i l  

cancellation detector which operates only on the past data, w i t h  probability 

of error given by Eqpatlon (19). 

B Reference 841, Figo sS m s  and Aaron present a similar curve 

for  .the probability of e r m r  of an Qptimlzed lfnear detector. 

curve is  drawn for  a symmetric pulse s ( t ) ,  implying a = 1, 

That 

fo r  

r = O02* It is  reproduced. i n  Fig. 11 f o r  comparison. We can see that 

the upper bound on Pe and this  new curve nearly coincide. 

upper bound is  established by considering a detector which uses the 

tail cancellatian principle fo r  b&h past and future data, this indicates 

Since a the 

that such a detector is newly eqpivalent t o  an optimum linear detector. 



I 

0 T n! 

0 T 2T 

Fig. 10 Input Pulse and the Matched F i l t e r  Output 

Finally, as discussed in the introduction, the ML detector w i l l  

always yield a Pe sma,ller than that of a l inear detector since the 

ML detector i s  not restricted by a constraint on linearity. 

the "linear detector" curve of Figo U. actually serves as another 

Therefore, 

upper bauxl on Peo 

5. Ektensions 

Consider the multi-level case where pk can take on one of M 

dis t inc t  values, alJ &2,...,%. 

ML detector casnputes 

Then using al as a reference, the 

a ~ .  data) 

P(pk = allall data) 
AM =i ' ( C L k  = j i = 1,2>*0o,Mj 



10-1 

10,-5 

T a i l  Cancellation 

ML Upper Bound 

I 
0.1 1.0 19 
I a 1 

100 



and chooses that 

is given by 

which yields the largest&. W e  can shuw t b t A u  

w h e r e  Ak is  the stme + as kat of Equation (1) and the B~ m e t i o n s  are 

similar t o  the previously encountered 2 ftmctinn, Equation (bl0 

appears that one could flnd antuppel: bound on thq performance of this  

It 

detector by a direct extension of the approach used i n  the b m  case. 

A search for  efficient imglementation of tMe detector and the actual. 

bwding of the Pe are recommended for further study. 

The major limitation of the approach taken in t h i s  report is the 

assumption that intersmbol interfeEnce exis ts  only between adjacent 

symbols. It is apparent that this r e s t rk t ion  is met i f  t h e  auto- 

correlation -tion @,,(T) of s ( t )  i s  zero for  T = *=$ % ~ o o o o  '. 
If such i s  the case, the signal can actually last fo r  mop13 thm two 

bauds. 

s( t )e  

The time function of Ngo 12 is an example of such ar~ aceept%ble 

~n fact, we may interpret the restrtetion t o  mean ttmt th a-ato- 
I 

coprelation function is non-zero only at T P 0 Ehnd at T = k.m9 K em 

integero Such might be the case when the interferenee is due LPj miL%l.- 

path, but only two paths are important. See Fig. 13. 21 impkmultlng 

such a receiver the delay line tap spacings are sinlply changed from I! 

seconds t o  KT seconds. 

Finally we r e c m n d  for further study the form of the MLD detector 

when the autocorrelation fhnction is non zero at mre than one integer 

multiple removed from T n 0. Fpnn t h e  extension above, we kj@&hesl.ze 



Fig. I 2  Acceptable s ( t )  
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0 T 2T 

I I 

-T 0 T 2T 3T 

Fig. 13 Another Acceptable s ( t )  
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that a good approximatYon t o  this detectm, fo r  interference between three 

synibols, w i l l  take the form of Fig. 14, where 

and 

s ( t )  s(t+iT) dt. 

This detector struqture is specified by three pammeters , R1, % cmd F$, 

and using the appraximatiap Zi[x} = -F$ Sgn[ x) might be easily implemented 

and analyzed. In that figure 

W h e n ?  

and 

6. C o ~ l u s i ~ s  

Implementation of the ML detector when intersyllibol inteflqrence exists 

mly between adjacent symbols i s  fair ly  simple. The detector consists of 

a fi l ter  matched t o  the signal pulse s ( t )  followed by a tapped dew l ine  

and a feedback loop (FQ. 2). 

matched f i l t e r ,  is dependent on a sing* -ter R j  given by R = 2pr, 

w h e r e  p is the signal-to-noise r a t i o ,  Equation (7), and r is the index 

of interference , EQuation (8). 

easi ly  be adapted t o  a changing signal-to-noise ratio. 

 he detector S t r u f x t r e J  excluding the 

~ h u s  the optirmlm deteceor stnactttre can 



I 

I -  + 



The perf'ormance of the ML detector can be adequately bounded. These 

bawads are presented in Figwets 6 through 90 A gross aJrpraprimstlos to  

the ML detector, that which  agpraodmates ~fx). the nan-linear autpUfier 

of EQustiw ( b ) ,  by a saturat- amplifier, 88 indicated in Eqyation (91, 

appears to  perform as w e l l  as an optimum linear detector a,nd may be easier 
I 

I to  implement. 
I 

I 
We indicate that these results can be extended t o  the multi-level 

ca8e and suggest an approarimation t o  the ML detector for significant 

interference between more thaa ope synibol. 

-31- 
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